Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3826-3834, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498923

RESUMO

Lightweight, easily processed, and durable polymeric materials play a crucial role in wearable sensor devices. However, achieving simultaneously high strength and toughness remains a challenge. This study addresses this by utilizing an ion-specific effect to control crystalline domains, enabling the fabrication of a polymeric triboelectric material with tunable mechanical properties. The dense crystal-domain cross-linking enhances energy dissipation, resulting in a material boasting both high tensile strength (58.0 MPa) and toughness (198.8 MJ m-3), alongside a remarkable 416.7% fracture elongation and 545.0 MPa modulus. Leveraging these properties, the material is successfully integrated into wearable self-powered devices, enabling real-time feedback on human joint movement. This work presents a valuable strategy for overcoming the strength-toughness trade-off in polymeric materials, paving the way for their enhanced applicability and broader use in diverse sensing applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119299, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341745

RESUMO

Multiple types of metal ions and active small molecules (reactive nitrogen species, reactive oxygen species, reactive sulfur species, etc.) exist in living organisms. They have connections to each other and can interact and/or interfere with each other. To investigate the relationship of metal ions and active small molecules in living cells, it is necessary and critical to develop molecular tools that can track two kinds of associated certain metal ions and reactive molecules with multiple fluorescence signals. However, this is a challenging task that requires an ingenious molecular design to achieve this goal. Here, we present a fluorescent probe (D-CN) that can offer fluorescence imaging of H2S and copper (II) ions with different response signals. Recognition of H2S and Cu (II) by the new probe can result in green and red emissions, respectively, providing different signal responses to the two substances in living cells and zebrafish. In addition, we used this probe to visually prove that the cytotoxicity of copper ions in living cells increases in the presence of hydrogen sulfide and could lead to cell apoptosis.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Cobre/toxicidade , Células HeLa , Humanos , Sulfeto de Hidrogênio/toxicidade , Íons , Imagem Óptica , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...